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From June 28-July 1, 2015, the Biophysical Society hosted
a thematic meeting in Taipei, Taiwan entitled “New biolog-
ical frontiers illuminated by molecular sensors and actua-
tors.” The meeting brought together a diverse group of
biophysicists from all around the globe who specialized in
various disciplines, including protein engineering, advanced
fluorescence imaging, mechanobiology, neuroscience,
materials science, and nanotechnology. Approximately
100 participants shared their discoveries and work, which
revealed a recurring theme: the importance of looking to
nature for inspiration and solutions. In this issue of Bio-
physical Journal, we present four perspective articles by
participants of the Taipei meeting that summarize the
current state of the field and its future prospects (1-4).

Molecular sensors came to prominence with the dis-
covery of the green fluorescent protein (GFP) in jellyfish.
Since those early days, researchers like the keynote speaker
Atsushi Miyawaki (RIKEN, Saitama, Japan) have devel-
oped fluorescent proteins spanning the color palate from
cyan to far red. Furthermore, they have enhanced these
proteins to exhibit unique optical properties, such as photo-
activation/switching and bioluminescence. The clever inte-
gration of fluorescent proteins into biological systems
means that fluorescence can be equated to a biological state
or function. A particularly visually attractive application
from Miyawaki’s work is the cell cycle indicator Fucci
(5). Alternatively, fluorescent proteins can be transformed
into sensors when the fluorescence is placed under the con-
trol of ligand binding. Miyawaki presented the example of
UnaG, a protein found in eels that becomes fluorescent
upon bilirubin binding (6). Perhaps the most famous fluores-
cent protein sensors are the calcium sensors, which gave rise
to the discovery of calcium spikes and waves. Thus, it is
fitting that, in this collection on sensors and actuators,
Suzuki, Kanemaru, and lino review genetically encoded
calcium sensors to monitor spatiotemporal dynamics in
intracellular organelles (3).
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The development of sensors and their integration with
advanced fluorescence techniques goes hand-in-hand. Note-
worthy cases are Forster resonance energy transfer (FRET)
and intravital imaging in live animals. Hirata and Kiyokawa
first reviewed the design of single-chain FRET biosensors to
monitor the activity of kinases, proteases, and GTPases and
then explored the possibility to use these biosensors in trans-
genic mice (1). They then discussed in detail how intravital
imaging technology can be optimized for FRET sensors.
While there are still technical challenges to overcome, bio-
physical measurements with the aid of molecular sensors in
living animals are the new frontier in cell biology, immu-
nology, tumor biology, and neurobiology (7).

As the implementation of colorful sensors vividly reveals
the spatiotemporally dynamic nature of cellular signaling,
the obvious next step is to decode these complex observa-
tions by probing causal relationships between the spatiotem-
poral profiles of cellular signaling and biological outcomes.
To achieve this, it is imperative to perturb a given signaling
pattern at the right time during the signaling events and at
the right place inside living cells. It is for this reason that
the meeting focused on both sensors and actuators, an insep-
arable pair, to manipulate a molecular process and record
the cellular response at the same time. To manipulate cell
signaling at will, Yu-Chun Lin and Toru Komatsu intro-
duced chemical dimerization tools, which exploit bacterial
compounds to induce the controlled binding of two proteins.
Meanwhile Michael Lin reported on optogenetics tools
where engineered, light-sensitive proteins derived from a
coral family undergo conformational changes upon photo-
illumination. Together with an introduction of such optoge-
netics molecules, Niu et al. describe biophysical prospects
of these systems (4).

An emerging topic that was strongly represented at the
conference was sensors and actuators for mechanobiology.
Sensors for physical forces such as membrane voltage and
cytoskeletal tension have been reported previously and we
now have the first sensors that report intramolecular forces
using a spider silk protein (8). Khalid Salaita presented
novel optomechanical actuators that exert piconewton
forces onto cells at nanoscale locations (9). The Perspective
by Allen Liu looks at a range of technologies, including
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optical, magnetic, and acoustic control of cell signaling
processes (2).

With these molecular tools in hand, an elegant example of
combining sensors and actuators (10) was presented by
Adam Cohen, who developed all-optical electrophysiology
based on voltage-sensitive proteins from microbes (11).
These are, however, just a subset of the many intriguing
presentations at the meeting that fully justified the title
“New biological frontiers illuminated by molecular sensors
and actuators.”
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